Long short-term memory (LSTM) is a type of powerful deep neural network that has been widely used in many sequence analysis and modeling applications. However, the large model size problem of LSTM networks make their practical deployment still very challenging, especially for the video recognition tasks that require high-dimensional input data. Aiming to overcome this limitation and fully unlock the potentials of LSTM models, in this paper we propose to perform algorithm and hardware co-design towards high-performance energy-efficient LSTM networks. At algorithm level, we propose to develop fully decomposed hierarchical Tucker (FDHT) structure-based LSTM, namely FDHT-LSTM, which enjoys ultra-low model complexity while still achieving high accuracy. In order to fully reap such attractive algorithmic benefit, we further develop the corresponding customized hardware architecture to support the efficient execution of the proposed FDHT-LSTM model. With the delicate design of memory access scheme, the complicated matrix transformation can be efficiently supported by the underlying hardware without any access conflict in an on-the-fly way. Our evaluation results show that both the proposed ultra-compact FDHT-LSTM models and the corresponding hardware accelerator achieve very high performance. Compared with the state-of-the-art compressed LSTM models, FDHT-LSTM enjoys both order-of-magnitude reduction in model size and significant accuracy improvement across different video recognition datasets. Meanwhile, compared with the state-of-the-art tensor decomposed model-oriented hardware TIE, our proposed FDHT-LSTM architecture achieves better performance in throughput, area efficiency and energy efficiency, respectively on LSTM-Youtube workload. For LSTM-UCF workload, our proposed design also outperforms TIE with higher throughput, higher energy efficiency and comparable area efficiency.
translated by 谷歌翻译
Model compression and model defense for deep neural networks (DNNs) have been extensively and individually studied. Considering the co-importance of model compactness and robustness in practical applications, several prior works have explored to improve the adversarial robustness of the sparse neural networks. However, the structured sparse models obtained by the exiting works suffer severe performance degradation for both benign and robust accuracy, thereby causing a challenging dilemma between robustness and structuredness of the compact DNNs. To address this problem, in this paper, we propose CSTAR, an efficient solution that can simultaneously impose the low-rankness-based Compactness, high STructuredness and high Adversarial Robustness on the target DNN models. By formulating the low-rankness and robustness requirement within the same framework and globally determining the ranks, the compressed DNNs can simultaneously achieve high compression performance and strong adversarial robustness. Evaluations for various DNN models on different datasets demonstrate the effectiveness of CSTAR. Compared with the state-of-the-art robust structured pruning methods, CSTAR shows consistently better performance. For instance, when compressing ResNet-18 on CIFAR-10, CSTAR can achieve up to 20.07% and 11.91% improvement for benign accuracy and robust accuracy, respectively. For compressing ResNet-18 with 16x compression ratio on Imagenet, CSTAR can obtain 8.58% benign accuracy gain and 4.27% robust accuracy gain compared to the existing robust structured pruning method.
translated by 谷歌翻译
This technical report briefly describes our JDExplore d-team's Vega v2 submission on the SuperGLUE leaderboard. SuperGLUE is more challenging than the widely used general language understanding evaluation (GLUE) benchmark, containing eight difficult language understanding tasks, including question answering, natural language inference, word sense disambiguation, coreference resolution, and reasoning. [Method] Instead of arbitrarily increasing the size of a pretrained language model (PLM), our aim is to 1) fully extract knowledge from the input pretraining data given a certain parameter budget, e.g., 6B, and 2) effectively transfer this knowledge to downstream tasks. To achieve goal 1), we propose self-evolution learning for PLMs to wisely predict the informative tokens that should be masked, and supervise the masked language modeling (MLM) process with rectified smooth labels. For goal 2), we leverage the prompt transfer technique to improve the low-resource tasks by transferring the knowledge from the foundation model and related downstream tasks to the target task. [Results] According to our submission record (Oct. 2022), with our optimized pretraining and fine-tuning strategies, our 6B Vega method achieved new state-of-the-art performance on 4/8 tasks, sitting atop the SuperGLUE leaderboard on Oct. 8, 2022, with an average score of 91.3.
translated by 谷歌翻译
由于NN模型的强大学习能力及其固有的高平行性,基于神经网络(NN)的方法已成为机器人运动计划的有吸引力的方法。尽管目前朝这个方向发展,但以直接和同时的方式对重要的顺序和空间信息的有效捕获和处理仍然相对较小。为了克服挑战并释放神经网络对运动计划任务的潜力,在本文中,我们提出了STP-NET,这是一个端到端的学习框架,可以充分提取并利用重要的时空信息来形成有效的神经信息运动计划者。通过将机器人的移动解释为视频剪辑,机器人运动计划被转换为视频预测任务,STP-NET可以在空间和时间上有效的方式执行。 STP-NET在不同的和看不见的环境之间进行了经验评估,表明,凭借近100%的准确性(又称成功率),STP-NET在计划速度和路径成本方面表现出非常有希望的性能。与现有的基于NN的运动计划者相比,STP-NET在2D随机森林,2D迷宫和3D随机森林环境中至少达到5倍,2.6倍和1.8倍的速度,速度较低。此外,STP-NET可以快速,同时计算多机手运动计划任务中的多个近乎最佳路径
translated by 谷歌翻译
当前的半监督视频对象分割(VOS)方法通常利用一个框架的整个功能来预测对象掩码和更新内存。这引入了重要的冗余计算。为了减少冗余,我们提出了一种区域意识到的视频对象细分(RAVOS)方法,该方法可预测感兴趣的区域(ROI),以进行有效的对象细分和内存存储。 Ravos包括一个快速对象运动跟踪器,可以在下一个帧中预测其ROI。为了有效的分割,根据ROI提取对象特征,并且对象解码器设计用于对象级分割。为了有效的内存存储,我们建议运动路径内存来通过记住两个帧之间对象的运动路径中的特征来滤除冗余上下文。除了Ravos,我们还提出了一个称为OVO的大型数据集,以基准在遮挡下基准VOS模型的性能。对戴维斯和YouTube-VOS基准和我们的新OVOS数据集的评估表明,我们的方法以更快的推理时间来实现最先进的性能,例如,戴维斯的42 fps的86.1 J&F在YouTube-in YouTube-in YouTube-in YouTube-in YouTube-23 fps上达到42 fps- VOS。
translated by 谷歌翻译
由于其实现的实际加速,过滤器修剪已广泛用于神经网络压缩。迄今为止,大多数现有滤波器修剪工作探索过滤器通过使用通道内信息的重要性。在本文中,从频道间透视开始,我们建议使用信道独立性进行有效的滤波器修剪,该指标测量不同特征映射之间的相关性。较少独立的特征映射被解释为包含较少有用的信息$ / $知识,因此可以修剪其相应的滤波器而不会影响模型容量。我们在过滤器修剪的背景下系统地调查了渠道独立性的量化度量,测量方案和敏感性$ / $可靠性。我们对各种数据集不同模型的评估结果显示了我们方法的卓越性能。值得注意的是,在CIFAR-10数据集上,我们的解决方案可以分别为基线Resnet-56和Resnet-110型号的0.75 \%$ 0.94 \%$ 0.94 \%。模型大小和拖鞋减少了42.8 \%$和$ 47.4 \%$(for Resnet-56)和48.3 \%$ 48.3 \%$ 52.1 \%$(for resnet-110)。在ImageNet DataSet上,我们的方法可以分别达到40.8 \%$ 44.8 \%$ 74.8 \%$ 0.15 \%$ 0.15 \%$ 0.15美元的准确性。该代码可在https://github.com/eclipsess/chip_neurivs2021上获得。
translated by 谷歌翻译
图表卷积网络(GCNS)已成为基于骨架的动作识别的主要方法。然而,它们仍然遭受两个问题,即邻域约束和纠缠的时空特征表示。大多数研究侧重于改善图形拓扑的设计,以解决第一个问题,但他们尚未充分探索后者。在这项工作中,我们设计了一个解开的时空变压器(DSTT)块,以克服GCN的上述限制三个步骤:(i)脱离时尚分解的分离;(ii)用于捕获全球背景下的相关性的全球时空注意; (iii)利用更多本地信息的本地信息增强。在其上,我们提出了一种名为分层图卷积件骨架变压器(HGCT)的新型架构,用于采用GCN(即,本地拓扑,时间动态和层级)和变压器的互补优势(即,全球背景和动态注意)。 HGCT轻量级和计算效率。定量分析证明了HGCT的优越性和良好的解释性。
translated by 谷歌翻译
在线广告中,自动竞标已成为广告商通过简单地表达高级活动目标和约束来优化其首选广告性能指标的重要工具。以前的作品从单个代理的视图中设计了自动竞争工具,而不会在代理之间建模相互影响。在本文中,我们从分布式多功能代理人的角度来看,请考虑这个问题,并提出一个常规$ \强调{m} $ ulti - $ \强调{a} $ gent加强学习框架,以便为$ clown {a} $ uto - $ \ Underline {b} $ IDDIND,即MAAB,了解自动竞标策略。首先,我们调查自动招标代理商之间的竞争与合作关系,并提出了一个温度定期的信用分配,以建立混合合作竞争范式。通过在代理商中仔细开展竞争和合作权衡,我们可以达到均衡状态,不仅担保个人广告商的实用程序,而且保证了系统性能(即社会福利)。其次,为避免竞争低价潜在勾结行为的合作,我们进一步提交了律师代理,为每位专家设定个性化招标酒吧,然后减轻由于合作而导致的收入退化。第三,要在大型广告系统中部署MAAB,我们提出了一种平均现场方法。通过将具有与平均自动竞标代理商相同的广告商进行分组,大规模广告商之间的互动大大简化,使得培训MAAB有效地培训。在离线工业数据集和阿里巴巴广告平台上进行了广泛的实验表明,我们的方法在社会福利和收入方面优于几种基线方法。
translated by 谷歌翻译
为了减轻二进制分类中培训有效二进制分类器的数据要求,已经提出了许多弱监督的学习设置。其中,当由于隐私,机密性或安全原因无法访问时,使用成对但不是尖标签的一些考虑。然而,作为一对标签表示两个数据点是否共享尖点标签,如果任一点同样可能是正的或负数,则不能容易地收集。因此,在本文中,我们提出了一种名为成对比较(PCOMP)分类的新颖设置,在那里我们只有一对未标记的数据,我们知道一个人比另一个更有可能是积极的。首先,我们提供了PCOMP数据生成过程,通过理论上保证导出了无偏的风险估计器(URE),并进一步提高了URE使用校正功能。其次,我们将PCOMP分类链接到嘈杂的标签学习,通过强加一致性正规化来开发渐进式,并改善它。最后,我们通过实验证明了我们的方法的有效性,这表明PCOMP是一种有价值的,实际上有用的成对监督类型,除了一对标签。
translated by 谷歌翻译
Deep learning with noisy labels is practically challenging, as the capacity of deep models is so high that they can totally memorize these noisy labels sooner or later during training. Nonetheless, recent studies on the memorization effects of deep neural networks show that they would first memorize training data of clean labels and then those of noisy labels. Therefore in this paper, we propose a new deep learning paradigm called "Co-teaching" for combating with noisy labels. Namely, we train two deep neural networks simultaneously, and let them teach each other given every mini-batch: firstly, each network feeds forward all data and selects some data of possibly clean labels; secondly, two networks communicate with each other what data in this mini-batch should be used for training; finally, each network back propagates the data selected by its peer network and updates itself. Empirical results on noisy versions of MNIST, CIFAR-10 and CIFAR-100 demonstrate that Co-teaching is much superior to the state-of-the-art methods in the robustness of trained deep models. * The first two authors (Bo Han and Quanming Yao) made equal contributions. The implementation is available at https://github.com/bhanML/Co-teaching.32nd Conference on Neural Information Processing Systems (NIPS 2018),
translated by 谷歌翻译